Resistive Memory for Approximate Program Acceleration
نویسندگان
چکیده
The Internet of Things significantly increases the amount of data generated that strains the processing capability of current computing systems. Approximate computing can accelerate the computation and dramatically reduce the energy consumption with controllable accuracy loss. In this paper, we propose a Resistive Associative Unit, called RAU, which approximates computation alongside processing cores. RAU exploits the data locality with associative memory. It finds a row which has the closest distance to input patterns while considering the impact of each bit index on the computation accuracy. Our evaluation shows that RAU can accelerate the GPGPU computation by 1.15× and improve the energy efficiency by 36% at only 10% accuracy loss.
منابع مشابه
Resistive CAM Acceleration for Tunable Approximate Computing
The Internet of Things significantly increases the amount of data generated, straining the processing capability of current computing systems. Approximate computing is a promising solution to accelerate computation by trading off energy and accuracy. In this paper, we propose a resistive content addressable memory (CAM) accelerator, called RCA, which exploits data locality to have an approximat...
متن کاملResistive Memory Based Acceleration of Data Intensive Computing
Resistive memory technologies hold the promise of replacing mainstream on-chip memory while providing enhanced throughput and capacity in modern compute systems. Demonstrating material, process, and circuit compatibility with existing CMOS infrastructures, resistive memories deliver non-volatility, no static power consumption, and improved density. Application of these technologies, however, re...
متن کاملInvestigation of resistive switching in anodized titanium dioxide thin films
In this work, TiO2 nanostructures were grown on titanium thin films by electrochemical anodizing method. The bipolar resistive switching effect has been observed in Pt/TiO2/Ti device. Resistive switching characteristics indicated the TiO2 nanotubes are one of the potential materials for nonvolatile memory applications. Increasing anodizing duration will increase nanotube lengths which itself c...
متن کاملApproximate resistivity and susceptibility mapping from airborne electromagnetic and magnetic data, a case study for a geologically plausible porphyry copper unit in Iran
This paper describes the application of approximate methods to invert airborne magnetic data as well as helicopter-borne frequency domain electromagnetic data in order to retrieve a joint model of magnetic susceptibility and electrical resistivity. The study area located in Semnan province of Iran consists of an arc-shaped porphyry andesite covered by sedimentary units which may have potential ...
متن کاملPage 3 of 22 Transactions on Architecture and Code Optimization
GP-SIMD, a novel hybrid general purpose SIMD architecture, addresses the challenge of data synchronization by in-memory computing, through combining data storage and massive parallel processing. In this paper, we explore a resistive implementation of the GP-SIMD architecture. In resistive GP-SIMD, a novel resistive row and column addressable 4F2 crossbar is utilized, replacing the modified CMOS...
متن کامل